
Totally Positive & Totally Non-Negative Matrices

A.P. Neate

August 31, 2020

Abstract

A real matrix is totally positive (TP) (respectively totally non-negative (TNN)) if each
of its minors is strictly positive (respectively non-negative). (Note in some sources the
terms strictly totally positive and totally positive are used instead [5]). In this report,
we explore total positivity and total non-negativity of a variety of matrices as well as
methods for verifying such properties.

1 Conventions and De�nitions

The interval [i, j] ⊂ Z will be used to denote the set {k ∈ Z : i ≤ k ≤ j}.
The notation w0 will describe the permutation on the set {1, . . . , n} that sends i to n+ 1− i.
Matrices shall be denoted by upper-case Roman letters and their entries will be denoted by
the corresponding lower-case letter with subscripts.

De�nition 1.1. We de�ne a planar network to describe an acyclic planar directed graph
consisting of n sources and n sinks.

De�nition 1.2. A path weight is the product of the weights of a set of connected edges where
if an edge has no weight, we take it to be 1.

De�nition 1.3. A weight matrix is de�ned for a directed planar network such that the i, jth
entry gives the sum of path weights for each of the paths from source i to sink j

De�nition 1.4. For matrix M and equally sized sets of rows indexed by I and columns
indexed by J , a minor M(I, J) is the determinant of the square sub-matrix de�ned by the
shared matrix elements of the rows in I and the columns in J .

De�nition 1.5. For matrixM , the minorM(I, J) is initial if I and J are consecutive integers
of the same length and one is of the form [1, k] for integer k.

De�nition 1.6. An elementary matrix Eij is de�ned such that it di�ers from the zero matrix
only in its i, jth entry which is 1.

1



2 Lindström's Lemma

The importance of planar networks in connection with total nonnegativity derives from the
following fundamental result due to Lindstrom and its converse due to Brenti.

Lemma 2.1 (Lindström [1]). The weight matrix of any planar network with edges only of

non-negative weight is totally non-negative.

Proof. We show this through induction on matrix size. For matrices of size 1 × 1 clearly a
matrix of this size is totally non-negative if and only if its single entry is non-negative. There
is an obvious bijection between 1 × 1 matrices and the planar network containing two nodes
connected by an edge of weight equal to that of the entry of the matrix and hence the Lemma
holds in this case.

Now for the inductive step; consider an n×n weight matrixM with entriesmi,j of a planar
network G. Each minor of M is a sub-graph of G consisting of only sources corresponding to
rows and sinks corresponding to columns as well as every connecting edge and node which is
not a sink or source. Since each minor of M is a weight matrix of some planar network, we
can assume these are TNN and it remains to show that det(M) is non-negative.

Consider the formula det(M) =
∑

σ∈Sn
sgn(σ)m1σ(1)m2σ(2), . . . ,mnσ(n). We see products

in the determinant sum are the same as the sum of path weights of families of n paths where
the ith path goes from the ith source to the σ(i)th sink. Notice that if two paths in a family
intersect then the set of edges covered by this family are the same as those in the family where
you swap the paths after their �rst intersection (least edges from source). Swapping paths after
an intersection is the same as a transposition of the two sinks. Hence the two terms in the sum
for the determinant that represent the path families being swapped have opposite signs and
hence, cancel each other out. This leaves the families of paths which contain no intersections as
the only ones which can contribute to the sum. If a family contains no intersections, it must
be associated with the identity permutation as the graphs are planar. Therefore, families
containing no intersections have sign of +1 and hence det(M) is the weighted sum of the
families of non-intersecting paths which must be a non-negative number.

•

•

•

•

•

•

•

•

•

•

• •

• • • •

• • • • • •

• • • • • •

• • • • • • • •

...

. . .. . .

1

2

3

n− 1

n

1

2

3

n− 1

n

Figure 1: Planar Network of General Weight Matrix

2



In addition to Lindström's result, Brenti [6] also showed that the converse is true, that any
TNN matrix is the weight matrix of some planar network. Now consider Figure 1 a planar
network such that edges are directed left to right. If you assign non-negative weights to the
diagonal and central horizontal edges on the graph in Figure 1 then there is a bijection between
n×n TNN matrices and graphs of this form [4]. This standard form of a planar network also
gives all the TP matrices if every edge is non-zero.

3 Pascal's Triangle

Take the n × n Pascal's triangle matrix to be the lower triangular matrix consisting of the
rows of Pascal's triangle, that is the n × n matrix M such that mij =

(
i
j

)
. This matrix is

well known to be TNN, see, for example, [2, Chapter 32], where the Pascal's triangle matrix
is realised as the weight matrix of a planar network. If we take the �rst 7 rows of Pascal's
triangle, we have the following matrix:

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 2 1 0 0 0 0

1 3 3 1 0 0 0

1 4 6 4 1 0 0

1 5 10 10 5 1 0

1 6 15 20 15 6 1


It can be shown this Pascal's matrix is TNN by direct calculation of the paths in Figure 2 if
we consider the weight of every edge to be 1. The planar network given, however, has a clear
structure, in fact, if we extend Figure 2 in the obvious way, we can show the number of paths
between source n and sink k is

(
n
k

)
.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

• • •

• • • •

• • • • •

• • • • • •

• • • • • • •

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Figure 2: Pascal's triangle as a standard planar network

3



One method of proof is to consider the recurrence relation
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
Theorem 3.1. Pascal's Triangle is the weight matrix for the planar network which is the

generalisation of Figure 2 and hence is totally non-negative.

Proof. We can see from Figure 2 that the recurrence
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
holds for n, k ≤ 2

and also that the initial conditions of
(

0
0

)
= 1,

(
0
n

)
= 0 for n > 0 are true. All that remains is

to show that the recurrence will always hold.
Assume for induction that the recurrence holds up to n−1; we wish to show that the recurrence
holds for n. Take some k and consider the �rst node on the network after source n, we have a
choice to either take the diagonal or the horizontal edge. If we take the diagonal edge then the
remaining number of paths shall be equal to the number of paths from source n− 1 to sink k
or
(
n−1
k

)
. Instead, consider the paths which take the horizontal edge. If we take the horizontal

edge then we cannot traverse the outer diagonal or the �rst row of the network. Thus, if we
remove these edges then we can see the network is identical except that all the sources and
sinks are indexed one higher and hence the paths from the node after the horizontal edge to
k will be identical to the paths from node n − 1 to k − 1 as shown for n = 6 and k = 4 in
Figure 3.

•

•

•

•

• • • •

• • • • •

• • • • •

• • • • •

5

6

3

4

•

•

•

•

• • • •

• • • • •

• • • • •

• • • • •

5

6

3

4

Figure 3: Comparing sub-graphs

Since every path from source n to sink k must travel through exactly one of the two edges
described then the calculated paths together make up the total number of possible paths.
Hence, we can see that the recurrence holds and therefore, Pascal's triangle is indeed the
weight matrix of the network described.

We could also consider the following proof. Consider that since the network is a directed
graph, moving along an edge moves us to the right. Therefore, regardless of how we move,
there must always be n nodes were we make a choice as to which edge we take. At each of
these nodes, we have the choice of taking the diagonal or the horizontal. If we wish to arrive
at source k, we must go horizontally exactly k times as we must go diagonally n − k times.
Since we are choosing k horizontal edges out of n total edges, we can see that the number of
paths from source n to sink k is

(
n
k

)
.

What total non-negativity shows is that any minor of Pascal's triangle can also be written
as a planar network simply by considering the sources and sinks corresponding to the rows
and columns of the matrix. For example consider the minor

M =


(

3
1

) (
3
3

) (
3
4

)(
4
1

) (
4
3

) (
4
4

)(
6
1

) (
6
3

) (
6
4

)


4



We can re-draw the network in Figure 2 to that shown in Figure 4 simply by removing any
non-functional edges to provide a planar network whose weight matrix is M .

•

•

•

•

•

•

• •

• •

• • • •

• • • • •

• • • • •

• • • • •

3

4

6

1

3

4

Figure 4: Planar network of weight matrix minor M

We can see here quite clearly by counting paths that M is the weight matrix of network
in Figure 4.

4 Stirling Numbers

In the previous section, we have seen how Lindström's Lemma can be used with non-weighted
planar networks. In this section, we will consider weighted planar networks which realise
Stirling numbers of the �rst and second kind whose matrices form triangles like that of Pascal's.
Through Lindström's Lemma we will also show these triangles to be TNN.

De�nition 4.1. The unsigned Stirling number of the �rst kind C(n, k) is the number of
permutations of [1, n] with exactly k cycles where we de�ne C(0, 0) = 1

De�nition 4.2. The Stirling number of the second kind S(n, k) is the number of partitions
of [1, n] into k non-empty disjoint subsets

We also have the following recurrence relations which can be proven combinatorially:

C(n, k) = C(n− 1, k − 1) + (n− 1)C(n− 1, k)

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

We shall also use the following notation. Let Cn denote the n× n matrix where cij = C(i, j)
and Snn denote the n×n matrix where sij = S(i, j). Each of these matrices is lower triangular
and hence gives us Stirling triangles as both kinds of Stirling numbers rely on order k subsets
of n of which there can only be a non-zero number if n ≥ k.

5



4.1 Stirling Numbers of the First Kind

First consider the �rst 4 rows of the triangle of Stirling numbers of the �rst kind.

C4 =


1 0 0 0

1 1 0 0

2 3 1 0

6 11 6 1


Using the recurrence relation we can derive the planar network that the matrix C4 is the
weight matrix of.

•

•

•

•

•

•

•

•

• •

• • •

• • • •

• • • • •

1

2

3

4

1

2

3

4

1

1

1

1

1

2

3

1

2 1

Figure 5: Planar network of C4,4

From these �rst four rows we start to see a pattern in the network. In fact, this is due to
the n− 1 term in the recurrence. We will show this pattern does indeed hold in general.

Theorem 4.3. The matrix Cn is a weight matrix and hence is TNN. Furthermore, the planar

network in the standard form (as in Figure 1) for which Cn is the weight matrix is de�ned as

follows. Let the weight of the diagonal edge connected to the jth node on the same row as the

ith source be denoted Pij then Pij = i − j, all horizontal edges have weight 1 and all weights

of diagonals after the horizontal edge are 0.

Proof. The idea is to de�ne a planar network P whose weight matrix can be proved to be the
same as the matrix for the Stirling numbers of the �rst kind. The planar network P is the
obvious generalisation of the picture drawn in Figure 5 where P has n sources si and n sinks
ti. The ith row has one source si and one sink ti and i−1 other vertices. For the vertices that
are not sources or sinks, vertex j on row i connects to vertex j on row i − 1 and has weight
i−j. Let Q = (qij) be the weight matrix for this planar network. We aim to show that Q = C
where C is such that cij is the Stirling number of the �rst kind C(i, j). To do this, we see
that the entries in Q and C agree up to the 4th row by counting paths on Figure 5. Next, we
must prove that the entries of Q satisfy the same recurrence relation as the Stirling numbers
of the �rst kind; that is, prove that qm,k = qm−1,k−1 + (m − 1)qm−1,k. We can check this by
hand for the low values calculated above. Assume that the recurrence has been checked up to

6



m− 1 and try to prove for m. Let Πm,k be the set of paths from sm to tk. Then,

qm,k =
∑

π∈Πm,k

w(π).

De�ne e1 to be the edge connecting the �rst vertex of row m to the �rst vertex of row m− 1.
We divide Πm,k into two disjoint subsets: those that include e1 and those that don't. Now e1

connects the �rst vertex of row m with the �rst vertex of row m− 1. Thus, a path taking this
route starts at e1 with weight m− 1 and then continues along a path from sm−1 to tk. Hence,
the sum of all the weights of these paths is (m− 1)qm−1,k.
Any path that does not contain e1 cannot go up any of the �rst diagonal edges and cannot
go along any part of the line from s1 to t1. Thus, we can delete these vertices and edges, and
see that on the resulting planar network the sum of the weights of paths not going along e1 is
qm−1,k−1. This proves that qm,k = qm−1,k−1 + (m− 1)qm−1,k, as required.

4.2 Stirling Numbers of the Second Kind

Similarly to that of Stirling numbers of the �rst kind, we also have a triangle of Stirling
numbers of the second kind and a planar network for which the 4×4 case is the weight matrix
of

S4 =


1 0 0 0

1 1 0 0

1 3 1 0

1 7 6 1



•

•

•

•

•

•

•

•

• •

• • •

• • • •

• • • • •

1

2

3

4

1

2

3

4

1

1

1

1

1

1

1

2

2 3

Figure 6: Planar network of S4,4

As with Stirling numbers of the �rst kind, we have an obvious pattern in the graph tied to
the recurrence relation. Here. each diagonal is one higher due to the k term in the recurrence.

Theorem 4.4. The matrix Sn is a weight matrix and as such is TNN. Furthermore, the planar

network in the standard form for which Sn is the weight matrix is de�ned as follows. Let the

weight of the jth diagonal edge from the left coming up from the ith source be denoted Pij then

7



Pij = j, all horizontal edges have weight 1 and all weights of diagonals after the horizontal

edge are 0.

Proof. As before, the idea is to de�ne a planar network P whose weight matrix can be proved
to be the same as the matrix for the Stirling numbers of the second kind. The planar network
P is the obvious generalisation of the picture drawn in Figure 6 where P has n sources si and
n sinks ti. The ith row has one source si and one sink ti and i − 1 other vertices. For the
vertices that are not sources or targets, vertex j on row i connects to vertex j on row i − 1
and has weight i− j. Let Q = (qij) be the weight matrix for this planar network. We aim to
show that Q = C where C is such that cij is the Stirling number of the second kind S(i, j).
To do this, we see that the entries in Q and C agree up to the 4th row by counting paths on
Figure 6. Next, we must prove that the entries of Q satisfy the same recurrence relation as the
Stirling numbers of the second kind; that is, prove that qm,k = qm−1,k−1 + (m− 1)qm−1,k. We
see the recurrence holds for m ≤ 4 from above. Assume that the recurrence has been checked
up to m− 1 and try to prove for m. Let Πm,k be the set of paths from sm to tk. Then,

qm,k =
∑

π∈Πm,k

w(π).

De�ne e−1 to be the edge connecting the last vertex of row k + 1 connecting to a vertex of
row k. We divide Πm,k into two disjoint subsets: those that include e−1 and those that don't.
Now, e−1 connects the last vertex of row k with row k + 1. Thus, a path taking this route
�nishes at e−1 with additional weight k after having taken a path equivalent in weight to
qm−1,k. Hence, the sum of all the weights of these paths is kqm−1,k.
Any path that does not contain e−1 cannot go up any of the last diagonal edges. Thus, we
can delete these edges and see that on the resulting planar network the sum of the weights of
paths not going along e−1 is qm−1,k−1. This proves that qm,k = qm−1,k−1 + (m− 1)qm−1,k, as
required.

5 Vandermonde Matrices

We will now consider another class of matrices. Vandermonde matrices are used in areas of
mathematics such as curve �tting and are de�ned as follows:

De�nition 5.1. A Vandermonde matrix is de�ned for 0 < a1 ≤ a3 ≤ · · · ≤ am as:

V =


1 a1 a2

1 . . . an−1
1

1 a2 a2
2 . . . an−1

2
...

...
...

. . .
...

1 am a2
m . . . an−1

m


We will show that when all ai are distinct, the Vandermonde matrix is TP but to do so

we require the following result.

Theorem 5.2 (Gasca and Peña, [3]). A square matrix is totally positive if and only if all of

its initial minors are positive.

8



Now if we consider the general square Vandermonde V then the determinant of V is well
known in general as det(V ) =

∏
1≤i<j≤n(aj−ai). Since (ai) is increasing, we have det(V ) ≥ 0

with equality if and only if there exists non-distinct ai. Further notice that the initial minors
of a Vandermonde matrix are either also Vandermonde matrices or are of the form:

Vm =


am1 am+1

1 . . . am+k−1
1

am2 am+1
2 . . . am+k−1

2
...

...
. . .

...

amk am+1
k . . . am+k−1

k

 = diag(am1 , a
m
2 , . . . , a

m
k )×


1 a1 . . . ak−1

1

1 a2 . . . ak−1
2

...
...

. . .
...

1 ak . . . ak−1
k


Hence, if we assume the ai are distinct, since each term is positive, then the diagonal matrix
has positive determinant. Therefore, the sign of the determinant of these minors is decided by
the sign of the determinant of some Vandermonde matrix which must be positive; hence V is
totally positive. Now this only proves TP for square Vandermonde matrices. However, notice
that any rectangular Vandermonde matrix is the sub-matrix of some square Vandermonde
matrix. Since TP implies TP of sub-matrices then all Vandermonde matrices with distinct ai
are TP.

Given that Vandermonde matrices are totally positive, we must be able to draw a planar
network for which a Vandermonde matrix is the weight matrix. The 4 × 4 case gives us the
following planar network

•

•

•

•

•

•

•

•

• •

• • • •

• • • • • •

• • • • • • • •

1

2

3

4

1

2

3

4

d1

d2

d3

d4

l1,1

l2,1

l3,1

l2,2

l3,2 l3,3

u1

u1

u1

u2

u2u3

Figure 7: Planar Network of 4× 4 Vandermonde Matrix

Where:

lij =

{
1 j = 1∏j−1
k=1(ai − ai−k)(ai−1 − ai−k−1)−1 j > 1

9



di =
i−1∏
k=0

(ai − ak)

uj = aj

6 Algorithms for Checking TNN

6.1 Neville Elimination

We have spoken about proving TNN in speci�c instances of matrices. Now, we will consider
an algorithmic approach to checking TNN. Neville Elimination is a method for factorising
a matrix A into upper and lower triangular matrices. By restricting the matrix operations
to subtraction of multiples of adjacent rows, we can preserve and hence prove total non-
negativity. The algorithm on a m× n matrix A was given in [10]; since in this report we are
only considering applying this algorithm to invertible matrices, the algorithm can be simpli�ed
for a n× n matrix to the following:

Neville Elimination Algorithm

Step 1: Set L = In and U = A

Step 2: If U is upper triangular stop and output L and U . Otherwise, go to Step 3.

Step 3: If the �rst column of U has two or more non-zero entries then set t = 1. Otherwise, set
t such that the sub-matrix of U consisting of the �rst t− 1 columns is in upper echelon
form but including column t the sub-matrix is not. Take the largest integer s such that
ust, us+1,t 6= 0 and uij = 0 for i ≥ s, j < t, replace U by (I − us+1,tu

−1
st Es+1,s)U and

replace L by L(I + us+1,tu
−1
st Es+1,s). Note A = LU , go to Step 2.

In [10], it was shown that each of these Neville moves in Step 3 preserve TNN, hence, if each
of the matrices I + us+1,tu

−1
st Es+1,s is TNN (i.e. at every Step 4 we have that us+1,tu

−1
st > 0)

then L must be TNN as it is the product of TNN matrices. Similarly, we can apply this
process to AT to �nd a factorisation of U and hence prove the matrix TNN.

6.2 Deletion Algorithm

In [9], a result gives us a simpler way to calculate whether a speci�c instance of a matrix is
TNN. For a m× p matrix M , we �rst de�ne the function gjβ(M) = (x′iα) where:{

xiα − xiβx−1
jβ xjα if xj,β 6= 0, i < j and α < β

xiα otherwise

If we take the matrix M then the output of the deletion algorithm is M̄ = g1,1 ◦ g1,2 ◦ gm,p−1 ◦
gmp(M). The importance of this function is that the output is a matrix which has easy con-
ditions to check that imply TNN of M . The �rst of the conditions on M̄ for TNN of M is
that M̄ contains only non-negative entries. The second condition is that M̄ 's zeroes form
a Cauchon diagram, meaning that if a zero exists then either all elements above or all ele-
ments to the zero's left must be zero. These conditions are a result shown in Theorem 4.1 of [9].

10



I implemented both of these algorithms (see the Appendix for the code used). I used both
the deletion algorithm and Neville elimination algorithm to fully factorise the same matrix
�nding that the deletion algorithm was more than twice as fast to compute on a 10 × 10
matrix.

7 Eulerian Numbers

De�nition 7.1. For a permutation σ ∈ Sn, a descent is an element i such that σ(i) > σ(i+1).

De�nition 7.2. The Eulerian numbers denoted E(n, k) are the number of permutations of
Sn with k descents.

Eulerian numbers follow the recurrence relation [11]

E(n, k) = (n− k)E(n− 1, k − 1) + (k + 1)E(n− 1, k).

This relation is similar to that of binomial and the Stirling numbers but does not give us a
planar network that is quite as nice. Below is the 5× 5 matrix of Eulerian numbers where for
n ∈ [1, 5], k ∈ [0, 4] the n, k+1th entry is E(n, k) as well as the corresponding planar network
for which this is the weight matrix 

1 0 0 0 0

1 1 0 0 0

1 4 1 0 0

1 11 11 1 0

1 26 66 26 1



•

•

•

•

•

•

•

•

•

•

• •

• • •

• • • •

• • • • •

• • • • • • •

0

1

2

3

4

0

1

2

3

4

1

1

1

1

1

1

1

1

1

3

7
3

15
7

23
3

705
161

2745
161

Figure 8: Planar network of the 5× 5 Eulerian triangle

Regarding the general Eulerian triangle we have the following

11



Conjecture 7.3 (Brenti [6]). The Eulerian triangle is TNN.

As we can see, there is no obvious pattern giving the network in Figure 8 and I have
found no proof the the Brenti conjecture. I have however tested total non-negativity of the
triangle using the deletion algorithm up to the matrix of size 100 and as of yet have found no
contradiction.

8 Catalan Numbers

De�nition 8.1. The Catalan numbers Cn = 1
n

(
2n
n+1

)
= 1

n+1

(
2n
n

)
8.1 Catalan-Shapiro Triangle

De�nition 8.2. The Catalan-Shapiro Triangle is the lower triangular matrix B where Bnk =
k
n

(
2n
n+k

)
. The �rst 5 rows are given below:

1 0 0 0 0

2 1 0 0 0

5 4 1 0 0

14 14 6 1 0

42 48 27 8 1


Lemma 8.3. The entries of the Catalan-Shapiro Triangle satisfy the recursion Bn+1,k =
Bn,k−1 + 2Bnk +Bn,k+1

Theorem 8.4 ([5] 4.7). A Toeplitz matrix for bi-in�nite sequence (ai) is de�ned A = (ai−j)
∞
i,j=1

and is totally non-negative if the generating function for (ai) has the form
∑

k akz
k = eγz

∏
i(1+αiz)∏
i(1−βiz)

for γ, αi, βi ≥ 0 and
∑

i(αi + βi) <∞. For �nite sequence (ai), i ∈ [0, n] this is equivalent to
the polynomial p(x) =

∑n
k=0 akx

k having n negative roots.

Wang-Wang [8] proved TNN of this matrix in the following way. Using Theorem 8.4,
the Toeplitz matrix T given by the sequence (1, 2, 1) is totally non-negative (the generating
function has a double root of -1). Due to the recursive formula for the Catalan-Shapiro

triangle, we have that B =

(
1 0

0 B

)
T and since both the identity matrix and T are TNN, it

is easily shown by induction that the Catalan-Shapiro triangle must also be TNN.

8.2 Catalan Triangle

De�nition 8.5. The Catalan Triangle is the lower triangular matrix C de�ned for n, k ≥ 0
such that cnk denotes the number of unique binary strings consisting of n 0's and k 1's where
no initial segment of the string has more 1's than 0's

12



The �rst 5 rows of the Catalan triangle are given below:

1 0 0 0 0

1 1 0 0 0

1 2 2 0 0

1 3 5 5 0

1 4 9 14 14


Theorem 8.6 ([7]). Ignoring the �rst row and column the main diagonal, the Catalan triangle

is exactly the Catalan numbers. Furthermore, the triangle satis�es the following recurrence

relation:

1. cn,0 = 1 for n ≥ 0

2. cn,1 = n for n ≥ 0

3. cn,k = cn,k−1 + cn−1,k for 1 < k ≤ n

Theorem 8.7 ([7]). The triangle also satis�es the general formula:

cnk =

(
n+ k

k

)
−
(
n+ k

k − 1

)
=

(n+ k)!(n− k + 1)

k!(n+ k)!

Catalan triangle is TNN up to the fourth row but if we consider the 5× 5 case, we �nd a
negative minor. Applying Neville elimination, clearing a column at a time, we get the following
matrices

1 0 0 0 0

1 1 0 0 0

1 2 2 0 0

1 3 5 5 0

1 4 9 14 14


→



1 0 0 0 0

0 1 0 0 0

0 1 2 0 0

0 1 3 5 0

0 1 4 9 14


→



1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 1 5 0

0 0 1 4 14


→



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 5 0

0 0 0 −1 14


Since Neville elimination preserves TNN, this shows that the Catalan triangle is not TNN. A
minor total non-negativity fails for is [2345|1234]. We can understand why this fails when we
consider the recurrence relation since subtracting adjacent rows will set an element to that on
its left unless it is on the diagonal where we have just subtracted 0. When we reach the 5× 5
case, the diagonal has larger elements and this is where we get the −1.

9 Cross-Symmetric Matrices

De�nition 9.1. A n× n matrix M is Cross-Symmetric (also known as centro-symmetric) if
for permutation w0, Mij = Mw0(i),w0(j) for all i, j ∈ [1, n].

These matrices are given their name as the elements of this matrix are symmetric about
its center. Cross-symmetric matrices arise in various places; interesting examples are Amazing
Matrices [12][13] which we will introduce later.

13



De�nition 9.2. An elementary C-S (cross-symmetric) matrix is one of the following two
types:

1. C-S Neville: A matrix which for a ≥ 0 has the form Fi = I − aEi,i−1 − aEw0(i),w0(i−1)

or is the inverse of such a matrix

2. C-S Row-Swap: A cross symmetric matrix which swaps adjacent rows and is either of
the form Rn/2 = I −En/2,n/2 +En/2+1,n/2 +En/2,n/2+1 −En/2+1,n/2+1 or when i 6= n/2
of the form Ri = I+(−Ei,i+Ei+1,i+Ei,i+1−Ei+1,i+1)+(−Ew0(i),w0(i) +Ew0(i+1),w0(i) +
Ew0(i),w0(i+1) − Ew0(i+1),w0(i+1))

Lemma 9.3. Multiplication by cross-symmetric elementary matrices preserves cross-symmetry.

Proof. Clearly these matrices are de�ned as to be cross-symmetric and it is well known that
the product of cross-symmetric matrices must also be cross-symmetric. This can easily be
shown by introducing the matrix J that is 1 on the anti-diagonal and 0 elsewhere and then
noticing that cross-symmetry of a matrix A is equivalent to the condition that JA = AJ . Now,
if A and B are cross-symmetric then JAB = AJB = ABJ and hence AB is cross-symmetric
also.

These elementary C-S matrices closely resemble those of the matrices used in Neville
elimination. In fact, we can use these matrices to similarly factorise matrices while preserving
cross-symmetry while at the same time exploiting cross-symmetry to increase e�ciency.

Cross-Symmetric Neville Elimination Algorithm

Step 1: Take the non-zero entry Mij below the diagonal which minimises j then maximises i
(most left then most bottom). If no such element exists we are done; else, if Mi−1,j is
non-zero go to Step 2. otherwise, go to Step 3.

Step 2: Take the C-S Neville matrix Fi = I −Mij/Mi−1,jEi,i−1 −Mij/Mi−1,jEn−i+1,n−(i−1)+1

and replace M by FiM . Go to Step 1.

Step 3: If n is even and i− 1 = n/2 then go to Step 4. Else, if n is odd and i = (n+ 1)/2 go to
Step 6. Otherwise go to Step 5.

Step 4: Replace M by Rn/2M swapping the central two rows. Go to Step 1.

Step 5: Replace M by RiM . Go to Step 1.

Step 6: Take the largest k < i such that Mk,j 6= 0. If no such k exists then go to Step 1 ignoring
column j in all future calculations; else, if k = i− 1 go to Step 1. Otherwise, replace M
by FkM where Fk = I + Ek,k+1 + Ew0(k),w0(k+1) and repeat Step 6.

Lemma 9.4. Any invertible cross-symmetric matrix of size n can be written as the product

of elementary cross-symmetric matrices and a diagonal matrix.

Proof. Consider the above algorithm for matrix M of size n. At each stage when we change
the matrixM , we do so by pre-multiplication of an elementary matrix, all of which are clearly
invertible (R−1

i = Ri and the inverse of a C-S Neville matrix is de�ned to be a C-S Neville
matrix). Assume we don't need the operation which ignores column j in Step 6. Now by

14



induction the algorithm must result in a diagonal matrix D after the product of some set of
elementary C − S matrices as each step reduces the number of non-zero elements. Now, take
the inverse of elementary C − S matrices which reduced M and we have M as the product of
elementary C-S matrices as required.

Assume instead we do ignore some column j in Step 6 at some stage in the algorithm.
In this case, we must have that M is singular. To show this, notice that since Mij is the
central element of an otherwise 0 column and since all operations preserve cross-symmetry, we
must always have Mjj = Mw0(j)j = Mjw0(j) = Mw0(j)w0(j). Similarly, for any other ignored
column k, we must have Mjk = Mw0(j)k = Mjw0(k) = Mw0(j)w0(k). Now notice that every
column not ignored will be 0 except for on the diagonal and hence 0 on row's j and w0(j).
Therefore we must have that rows j and w0(j) are identical and hence M is singular. This
implies that ignoring a column in Step 6 cannot occur if M is invertible and thus we already
have a factorisation of M as required.

10 Amazing Matrices

In [12], Holte discovered the aptly named Amazing matrices from studying the probability of
'carries' when adding together large numbers. Holte found these matrices give rise to several
interesting properties including the appearance of the Eulerian and Stirling numbers discussed
earlier in the eigenvectors of these matrices. The following de�nition for these matrices was
given by Holte in [12].

De�nition 10.1. The n×n Amazing Matrix Pb is de�ned such that for n random numbers in
base b, the i, jth entry of Pb is given by the probability of carrying j to the column of addition
given that you carried i into the current column. It was proven [12] that each entry is given
by the formula:

pij = b−n
j−bi/bc∑
r=0

(−1)r
(
n+ 1

r

)(
n− 1− i+ (j + 1− r)b

n

)
Diaconis and Fulman [13] gave an alternative de�nition in terms of the shu�ing of cards.

They also conjectured these matrices to be TNN and proved the 2× 2 minors must always be
positive.

Conjecture 10.2 (Diaconis-Fulman [13]). Any Amazing matrix P is totally non-negative.

This could be proven by showing the following:

1. P is cross-symmetric.

2. P can be factorised as in Lemma 9.4 to a positive diagonal matrix using only C-S Neville
matrices with no row swaps required (i.e. no unexpected zeroes occur).

(1) was proven by Holte in [12] Theorem 2 and hence the conjecture reduces to (2) which as
of yet has not been shown. It has, however, been shown that all 2 × 2 amazing matrices are
TNN [13], total non-negativity of the 3× 3 and 4× 4 cases was obtained in an earlier student
project by Natasha Strokes. I have also shown that all 5× 5 cases are TNN by factorising the
matrix M = bnPb such that M = L1L2L3L4DU4U3U2U1 where these matrices are shown on

15



the next page. The matrices Li and Ui are the product of elementary Neville matrices given
by the elements on the anti-diagonal. For example,

L1 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 b−4
b+1 1





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 b−3
b+2 1 0

0 0 0 0 1





1 0 0 0 0

0 1 0 0 0

0 b−2
b+3 1 0 0

0 0 0 1 0

0 0 0 0 1





1 0 0 0 0
b−1
b+4 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

these anti-diagonals give the weights of the planar network for which the Amazing matrix is
the weight matrix. This factorisation shows TNN for b > 4 since all terms in the factorisation
are positive. For b ∈ {1, 2, 3, 4} the matrices have been explicitly checked and hence all 5× 5
Amazing matrices are TNN.

Acknowledgements

I would like to thank my supervisor Prof. Tom Lenagan for agreeing to and providing
support throughout this project. This work was funded by University of Edinburgh School
of Mathematics.

16



L1L2L3L4 =



1 0 0 0 0
b−1
b+4 1 0 0 0

(b−2)(b−1)
(b+3)(b+4)

b−2
b+3 1 0 0

(b−3)(b−2)(b−1)
(b+2)(b+3)(b+4)

(b−3)(b−2)
(b+2)(b+3)

b−3
b+2 1 0

(b−4)(b−3)(b−2)(b−1)
(b+1)(b+2)(b+3)(b+4)

(b−4)(b−3)(b−2)
(b+1)(b+2)(b+3)

(b−4)(b−3)
(b+1)(b+2)

b−4
b+1 1





1 0 0 0 0

0 1 0 0 0

0 (b+4)(2b−1)
(b+3)(2b+3) 1 0 0

0 (b−1)(b+4)(2b−1)
(b+1)(b+2)(2b+3)

(b−1)(b+3)
(b+1)(b+2) 1 0

0 (b−1)(b+4)(2b−3)(2b−1)

(b+1)2(2b+1)(2b+3)

(b−1)(b+3)(2b−3)

(b+1)2(2b+1)

(b+2)(2b−3)
(b+1)(2b+1) 1





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 (3b−1)(2b+3)(b+3)
2(3b+2)(b+1)(b+2) 1 0

0 0 (3b−1)(3b−2)(2b+3)(b+3)
(3b+1)(3b+2)(2b+1)(b+1)

2(3b−2)(b+2)
(3b+1)(2b+1) 1





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 2(4b−1)(3b+2)(b+2)
(4b+1)(3b+1)(2b+1) 1



D =



b(b+1)(b+2)(b+3)(b+4)
120 0 0 0 0

0 b2(b+1)(2b+1)(2b+3)
6(b+4) 0 0 0

0 0 b3(3b+1)(3b+2)
(2b+3)(b+3) 0 0

0 0 0 b4(24b+6)
(3b+2)(b+1)(b+2) 0

0 0 0 0 120b5

(4b+1)(3b+1)(2b+1)(b+1)



U4U3 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 (b+2)(3b−1)(3b+2)(4b−1)
4(2b+1)(4b+1)(15b2−4)

0 0 0 0 1





1 0 0 0 0

0 1 0 0 0

0 0 1
4(b+3)(2b−1)(2b+1)(2b+3)(15b2−4)

3(b+1)(3b+1)(3b+2)(55b3+89b2−30b−36)
(3b−1)(3b−2)(2b−1)(2b+3)(b−2)(b+3)

3(3b+1)(3b+2)(b+1)(55b3−89b2−30b+36)

0 0 0 1 −(3b−1)(3b−2)(b−2)(55b3+89b2−30b−36)
−4(2b+1)(15b2−4)(55b3−89b2−30b+36)

0 0 0 0 1



U2U1 =



1 0 0 0 0

0 1 3(b+4)(55b3+89b2−30b−36)
2(b+2)(2b+1)(2b+3)(13b+24)

(b−1)(b+4)(55b3−89b2−30b+36)
2(b+1)(2b+1)(2b+3)(11b2−24)

(2b−1)(2b−3)(b−1)(b−3)(b+4)
2(b+1)2(2b+1)(2b+3)(13b−24)

0 0 1
(b−1)(b+2)(13b+24)(55b3−89b2−30b+36)

3(b+1)(11b2−24)(55b3+89b2−30b−36)
(13b+24)(2b−1)(2b−3)(b−1)(b+2)(b−3)
3(b+1)2(13b−24)(55b3+89b2−30b−36)

0 0 0 1 (2b−1)(2b−3)(b−3)(11b2−24)
(13b−24)(b+1)(55b3−89b2−30b+36)

0 0 0 0 1





1 2(b−1)(13b+24)
(b+3)(b+4)

6(b−1)(11b2−24)
(b+2)(b+3)(b+4)

2(b−2)(b−1)(13b−24)
(b+2)(b+3)(b+4)

(b−4)(b−3)(b−2)(b−1)
(b+1)(b+2)(b+3)(b+4)

0 1
3(11b2−24)

(b+2)(13b+24)
(b−2)(13b−24)
(b+2)(13b+24)

(b−4)(b−3)(b−2)
2(b+1)(b+2)(13b+24)

0 0 1 (b−2)(13b−24)
3(11b2−24)

(b−4)(b−3)(b−2)
6(b+1)(11b2−24)

0 0 0 1 (b−4)(b−3)
2(b+1)(13b−24)

0 0 0 0 1



17



Appendix

I used Python with the Sympy module to program the algorithms covered in this report. The
implementation is shown below.

1 '''Imports sympy module '''

2 import sympy as sym

3

4 '''Deletion Algorithm '''

5 def DDA(M):

6 N=M.copy()

7 '''Loops through [0,n-1] matrix elements backwards '''

8 for j in reversed(range(M.shape [0])):

9 for b in reversed(range(M.shape [1])):

10 M=N.copy()

11 '''Carries out function '''

12 for i in range(j):

13 for a in range(b):

14 if(N[j,b] != 0):

15 '''Carries out function operation '''

16 N[i,a] = sym.simplify(M[i,a] - \

17 M[i,b]/M[j,b]*M[j,a])

18 return N

19

20 '''Checks if the deletion algorithm output satisfies

21 the required conditions '''

22 def IsTnnAfterDDA(N):

23 for i in range(N.shape [0]):

24 for j in range(N.shape [0]):

25 '''Not TNN if an element is < 0'''

26 if(N[i,j] < 0):

27 return False , i,j

28 '''Checks Cauchy diagram condition '''

29 if(N[i,j] == 0):

30 if(N[0:i+1,j].norm() != 0 and\

31 N[i,0:j+1]. norm() != 0):

32 return False

33 return True

34

35 '''Carries out Neville elminiation '''

36 def Neville(V):

37 '''Creates initial matrices and places them in arrays '''

38 n = V.shape [1]

39 U = [V]

40 L = [sym.eye(n)]

41 D = [sym.eye(n)]

42 F = []

43

44 '''Loops through columns of matrix '''

45 for i in range(n):

46 '''Creates sub -diagonal matrix which represent

47 the subtraction of rows '''

48 F.append(sym.eye(n))

18



49 for j in range(i+1,n):

50 if(U[-1][j-1,i]==0):

51 continue

52 '''Creates Neville matrix '''

53 F[-1][j,j-1] = sym.simplify(-U[-1][j,i]/U[-1][j-1,i])

54 '''Appends new upper and lower matrices '''

55 U.append(F[-1]*U[-1])

56 L.append(F[-1].inv ())

57 E = sym.eye(n)

58 E[i,i] = U[-1][i,i]

59 D.append(D[-1]*E)

60 '''Creates diagonal matrix so the triangular matrices

61 have 1 on the diagonal '''

62 U[-1] = E.inv()*U[-1]

63 return L, D, U, F

64

65 '''Cross -Symmetric Neville Elimination '''

66 def CrossSymNeville(V):

67 '''Creates initial matrices and places them in arrays '''

68 n = V.shape [0]

69 F = []

70 L = []

71 U = [V]

72 for i in range(n):

73 for j in reversed(range(i,n)):

74 if (i == j or (U[-1][j-1,i] == 0 and U[-1][j,i] == 0)):

75 continue

76 if (U[-1][j-1,i] == 0):

77 if (j == n/2): '''Step 4'''

78 F.append(sym.eye(n))

79 F[-1][j-1,j-1] = 0

80 F[-1][j,j] = 0

81 F[-1][j,j-1] = 1

82 F[-1][j-1,j] = 1

83 U.append(F[-1]*U[-1])

84 L.append(F[-1].inv ())

85 continue

86 elif (j != (n -1)/2): '''Step 5'''

87 F.append(sym.eye(n))

88 F[-1][j-1,j-1] = 0

89 F[-1][j,j] = 0

90 F[-1][j,j-1] = 1

91 F[-1][j-1,j] = 1

92

93 F[-1][n-j,n-j] = 0

94 F[-1][n-1-j,n-1-j] = 0

95 F[-1][n-1-j,n-j] = 1

96 F[-1][n-j,n-1-j] = 1

97

98 U.append(F[-1]*U[-1])

99 L.append(F[-1].inv ())

100 continue

101 else: '''Step 6'''

19



102 for k in reversed(range(j-1)):

103 if (U[-1][k,i] != 0):

104 while (U[-1][j-1,i] == 0):

105 F.append(sym.eye(n))

106 print(k,k+1)

107 F[-1][k+1,k] = 1

108 F[-1][n-2-k,n-1-k] = 1

109 U.append(F[-1]*U[-1])

110 L.append(F[-1].inv ())

111 k = k+1

112 break

113 continue

114 '''Neville Move '''

115 F.append(sym.eye(n))

116 F[-1][j,j-1] = -U[-1][j,i]/U[-1][j-1,i]

117 F[-1][n-1-j,n-1-j+1] = -U[-1][j,i]/U[-1][j-1,i]

118 U.append(F[-1]*U[-1])

119 L.append(F[-1].inv ())

120 return F,U,L

References

[1] B. Lindström On the Vector Representations of Induced Matroids. Bulletin London Math.
Soc. 5 (1973) 85-90

[2] M. Aigner, G.M. Ziegler. Proofs from the Book, sixth edition. Springer-Verlag, Berlin,
Including illustrations by Karl H. Hofmann, (2018), Chapter 32 (Lattice paths and deter-
minants)

[3] M. Gasca and J.M. Peña Total positivity and Neville elimination. Lin. Alg. and Appl. 165,
(1992), 25�44.

[4] S. Fomin and A. Zelevinsky Total Positivity: Tests and Parametrizations. Math Intelli-
gencer 22 (2000), no. 1, 23-33.

[5] A. Pinkus Totally Positive Matrices. Cambridge Tracts in Mathematics 181, Cambridge
University Press, Cambridge, 2010

[6] F. Brenti The applications of total positivity to combinatorics, and conversely. In: Gasca,
M., Micchelli, C.A. (eds.) Total Positivity and its Applications. Kluwer, Dordrecht (1996)

[7] N. J. A. Sloane, (ed.). Sequence A009766 (Catalan's triangle). The On-Line Encyclopedia
of Integer Sequences. OEIS Foundation.

[8] Wang, Charles and Yi, Wang. Total positivity of Catalan triangle. Discrete Mathematics.
338. (2015)

[9] K.R. Goodearl, S. Launois, and T.H. Lenagan. Totally nonnegative cells and matrix Pois-

son varieties. Advances in Mathematics 226 (2011), 779-826.

[10] K.R. Goodearl and T.H. Lenagan LU decomposition of nonnegative matrices. Linear Al-
gebra and its Applications, 436 (2012), 2554-2566

20



[11] T.K. Petersen. Eulerian Numbers. Birkhäuser Advanced Texts, Birkhäuser, (2015), 6-8

[12] J.M. Holte Carries, Combinatorics and an Amazing Matrix. American Mathematical
Monthly 104:2 (1997) 138-149

[13] P. Diaconis and J. Fulman Carries, Shu�ing, and an Amazing Matrix. American Math-
ematical Monthly 116:9 (2009) 788-803

21


